CS 170, Spring 2022 Note 0: Efficient Algorithms

These notes are serve as a concise presentation of topics taught in CS170, Efficient
Algorithms and Intractable Problems, at UC Berkeley. Everything in these notes are
in scope for exams, excluding sections specifically designated as [EXTRA] and anything
in the footnotes.

In these notes, we will assume knowledge of programming, data structures and math-
ematical proofs.

We will use Pythonic psuedocode. Assume lists are implemented as Python lists, so
accessing an element at a given index takes constant time.ﬂ

0 Motivation

Algorithmsﬂ form the foundations of modern computing technology. Wireless networks
(WiF1i), for example, were only made possible by an algorithm for efficient Fourier
transforms, and GPS navigation applications by Dijkstra’s algorithm. In this course,
we will explore the (fast) Fourier transform and Dijkstra’s, along with a multitude of
other algorithms that form the theoretical foundations of computer science. During
this process, we hope to impart insights on how to devise algorithms, prove their
correctness, and analyze their time and space complexity - skills that are essential for
any computer scientist or software engineer. Welcome to CS170!

1 Algorithms

An algorithm is a finite sequence of well-defined instructions used to perform a com-
putation. There may exist many algorithms to solve a given problem, although for
practical purposes, we focus on the most efficient ones.

When discussing an algorithm, we generally break the process down into three parts: a
description of the algorithm, a proof of correctness, and runtime/memory analysis. We
may rigorously express an algorithm by its pseudocode; or, more often, we opt for a
high-level description to succinctly highlight the main ideas and omit implementation
details. Both of these approaches are equally acceptable for presenting an algorithm.

Example: Finding the maximum element in a list of integers (assume the list is finite
and nonempty, so the maximum is well-defined).

High-Level Description:

IThis is because a Python list is implemented as a (dynamic) array (e.g Java ArrayList), and an
array is stored as a contiguous block of memory. So, accessing at an index is some arithmetic, then
following a pointer to a memory address.

2The term ’algorithm’ is named after the 9th century mathematician and polymath al-Khwarizmi,
known for creating fundamental arithmetic algorithms and inventing algebra, among other things.



CS 170, Spring 2022 Note 0: Efficient Algorithms

Assign the first number in the list as the max element. For each remaining number in
the list: if this number is larger than max, replace max with this number. When there
are no numbers left in the list to iterate over, return max.

Pseudocode:

Algorithm 1 Maximum Element of Nonempty List
1: procedure GET_MAX(Ist)
2 max_element < lst[0]
3 for num in Ist do
4: if num > max_element then
5
6

max_element < num
return max_element

Proof of Correctness:

Observe that the value of max_element is always assigned to be equal to some number
in the provided list. This implies that max_element cannot be strictly greater than
every number in the list, and is less than or equal to the true maximum element of the
list. Simultaneously, the max variable must be greater than or equal to every value in
the list due to the for loop. These two inequalities imply that the returned value is
exactly equal to the maximum value of the list.

Runtime:

The initialization of the max is O(1), and the loop does O(1) for each element in the
list, which has n elements. Thus, the overall runtime is O(n).

2 Asymptotics

The widely used method to measure the performance of an algorithm by its running
time (also known as “time complexity”) is by counting the number of basic computer
steps as a function of the size of the input(s), usually denoted by n. As most algorithms
finish quickly on modern day computers when n is small, we are most interested in the
asymptotic behavior, i.e when n is large. To achieve this, we use big O notation.

Intuitively, big O notationE] allows us to compare two functions asymptotically; for two
functions f and g, f = O(g) is an analog of f < g.

Formally, let f(n) and g(n) be functions from the positive integers to the positive reals
representing an algorithm’s running time with an input of size n. We say f(n) =

3We are using Donald Knuth’s definition of Big-O Notation. There is a slightly different definition
used in analytic number theory.



CS 170, Spring 2022 Note 0: Efficient Algorithms

O(g(n)) if there exists a constant ¢ > 0 such that f(n) < c- g(n)[]

Example: An algorithm that takes f(n) = 5n3 + 4n + 3 steps for an input of size n is
O(n?), as we may set ¢ = 12. Similarly, the same algorithm is also O(n'%’) and O(2"),
however these are less informative. To avoid these absurdities, we generally consider
the tightest big O bound we can.

As stated before, f(n) = O(g(n)) is an analog of f < g. Similarly,

F(n) = Qg(n)) <= g(n) = O(f(n)) is an analog of f > g.

f(n) =6(g(n)) <= (f(n) = 0O(g(n)) A g(n) = O(f(n))) is an analog of f = g.
The default in this class is to use O() even if ©() is eligible.

Figure 1: n? grows faster than 2n + 20. Source: DPV, pg. 16

100

%}
8ol
70}
60
2
n
50(- /
401 / P

30%

201

Usefully, big O may also be defined in terms of limits. This is generally the preferred
method for determining asymptotic relationship between two functions. The definitions
are as follows:

Jim. o) < f(n) =0O(g(n))
. f(n) ) — .
dm iy =0 e Fn) = Qlg(m)

This is actually a simplification - these definitions only hold when the limit is deﬁned.ﬂ

Trying the limit test on our example above, lim,, % = 5 after applying L’Hopital’s

rule. Thus, f = O(n?) and f = Q(n?), so f = O(n?).

4This is technically an abuse of notation, as the equal sign here is not symmetric: O(n) = O(n?)
is true, but O(n?) = O(n) is certainly false. It’d be more fitting to say n € O(n?), but the equals sign
is customary.

SMathematicians bypass the edge case of an undefined limit using supremum or infimum.



CS 170, Spring 2022 Note 0: Efficient Algorithms

Below are a few general rules for big O notation. Try to justify each statement yourself
(Exercise 0.1):

e Exterior multiplicative constants can be omitted, e.g. 14n* = O(n?), 3"* =

O(3").
e Lower order terms can be eliminated, e.g. n? + nlnn + 10 = O(n?)

e Exponentials > polynomials > logarithms > constants, e.g. 3 = O(log(n)),
Inn = O(n), n? = O(2").

e Exponentials of higher base dominate those of lower base: a™ dominates 0" if
a>b,eg 2"=0(3").

e Polynomials of higher degree dominate those of lower degree: n* dominates n® if
a>b,eg n=0(n?

e Logarithm bases do not matter: log, n = ©(log, n) for any a, b.

Big O notation is also used for measuring the memory usage of an algorithm (also
known as “space complexity”). Space complexity generally refers to the additional
amount of memory used in an algorithm, i.e excluding the size of the inputs. Usually,
this is straightforward to calculate and does not require the analysis above.

It is important to remember that big O is just a model for simplification of analysis.
It disregards many important factors of real-life computing speed such as the time it
takes reading from disk or the effects of large constant factors. Ultimately, however, it
is a very useful framework that we will use for the rest of the class to analyze efficiency.

3 Fibonacci

0,1,1,2,3,5,8,13,21, 34, ...
The above sequence is known as the Fibonacci numbers. The Fibonacci numbers are
defined recursively:
F(] — O
Fl — 1
F, = n—1+ Fn—2-

We would like to devise an algorithm to calculate the nth Fibonacci number. The first
algorithm we may come up with, in pseudocode:

Pseudocode:



CS 170, Spring 2022 Note 0: Efficient Algorithms

Algorithm 2 Naive Fibonacci Algorithm
1: procedure FIB(n)

2: if n =0 then return 0
3: if n =1 then return 1
4: return FIB(n — 1) + FIB(n — 2)

This algorithm is obviously correct, as we have directly transcribed the definition.
However, how efficient is it?

Let’s do an inductive analysis: let 7(n) be the number of computer steps used to
calculate F,. Assuming arithmetic operations are constant, the function’s runtime is a
constant plus the amount of time of the recursive calls: T'(n) =T(n—1)+T(n —2) +
O(1). We can observe T(n—1) > T(n—2),s0 T(n) > T(n—2)+T(n—2) = 2T (n—2).
Furthermore, using the same reasoning, T'(n —2) > 2T (n—4), so T'(n) > 2x2T(n—4),
and so on.

Thus, T'(n) >= 2/2 follows with an inductive argument with T(0) = 1,T(1) = 2 as
the base case. So, this algorithm is on the order of exponential time.

What can we do to improve this algorithm? We may observe that we recalculate FIB(x)
for most values of x many times in our recursion (e.g FIB(3) is calculated from scratch
for every x > 3). To remove this repetition, we can instead store the values of FIB(x)
in an array, so we can access them in constant time instead of recalculating them.

Pseudocode:

Algorithm 3 Fibonacci Linear-time Algorithm
1: procedure FIB(n)

2 if n =0 then return 0
3 Ist < [0..n — 1]

4: Ist[0] < 0

5: Ist[1] < 1
6

7

8

for iin [2.n] do
Ist[i] < Ist[i — 1] + Ist[i — 2]

return Ist[n — 1]

Now, each FIB(z) is only calculated once! Since the calculation of FIB(x) for any x
is O(1) and there are n values calculated up to FIB(n), the total running time of the
algorithm is O(n). At the expense of O(n) memory, we have now reduced our algorithm
to linear timel”

6This is actually an example of dynamic programming, which will be covered in detail later in this
course.



CS 170, Spring 2022 Note 0: Efficient Algorithms

4 Bit Complexity and Addition

How many digits are in a non-negativd’| number N in base b? With k digits, we can
express numbers up to b¥ — 1; for example in base 10, the largest number that can
be represented with £ = 3 digits is 999. Thus solving for k, we find a number N has
[log, N + 1], or O(log N) digits. In this course, unless we specify otherwise we will be
using base 2, i.e binary, so we may use ‘digits’ and ‘bits’ interchangeably.

Let’s revisit the elementary algorithm for how to add two numbers. Recall we are
interested in measuring an algorithm’s runtime with respect to the size of the inputs.
For the addition problem, the size of the inputs are the number of digits in the two
numbers. Hence, we are interested in the bit complexity of the algorithm. Suppose we
have two numbers x and y that each are n bits long. Using the elementary algorithm,
each individual bit summation is calculated using some fixed amount of time (say,
using a truth table), and there are at most n + 1 digits in the result. Thus, the entire
algorithm runs in O(n).

So, it’s true that adding larger numbers takes longer than adding smaller numbers. In
the rest of the course, however, we shall treat addition and all other basic arithmetic
operations as a constant time operation unless otherwise speciﬁed.ﬂ

5 Subroutines

When devising new algorithms, we often take an existing algorithm and use it as a
subroutine. For example, in multiplication, which we’ll cover in the next note, we will
use addition as a subroutine. It is useful to think of the subroutine algorithm as a
‘black-box’, meaning we only care about the inputs and outputs, and ignore all the
internal details. In fact, all recursive algorithms take advantage of subroutines, as they
use a smaller version of themselves (i.e subproblems) as subroutines! Any algorithm
taught in lecture may be used as a subroutine without proof if unmodified in any way.
If modified, it must be proven from scratch, as even a small modification can affect an
algorithm’s correctness.

The process of using an algorithm without modification as a subroutine is formally
called a reduction, which will be a focus of the second half of this course.

"Note that we are only concerned about non-negative integers, though there are several schemes
to handle negative numbers by using an extra bit such as Two’s Complement, which is covered in
CS61C.

8Why can we make this assumption? One reason is that in many languages such as Java, ints have
a fixed length representation of 32 bits. This means that all basic arithmetic operations involving ints
are constant, as the length of all ints are fixed. The downside is that there are limits to the size of
numbers that can be represented with ints, but this is generally not a problem since we rarely have
to deal with numbers larger than 32 bits. If we do need to work with arbitrarily large numbers then
we must use some other representation and arithmetic can no longer be assumed to be constant time.



CS 170, Spring 2022 Note 0: Efficient Algorithms

6

Exercises

. Justify each of the statements in the Big O section of this note.

. Find a tight bound for the runtime of Selection sort. Selection sort iteratively

finds the minimum element of the active list, moves it to the front, then removes
it from the active candidates.

. Find a tight bound for the summation y ;' 2"
. Improve the linear time fibonacci algorithm above to O(1) space instead of O(n).

. Can the bit complexity of addition be improved? Justify why or why not.



CS 170, Spring 2022 Note 0: Efficient Algorithms

7 Solutions

1. Apply the limit test for each statement. The solutions for each individual prop-
erty are omitted for brevity.

2. On the first iteration, Selection sort examines n elements, then n — 1, then n — 2,
and so on down to the last element. The runtimeisn+n—-14+n—-24+---+1=

n(n+1)/2 = O(n?).

3. By the formula for a finite geometric series, the summation is equal to 2" —1 =

0(2").

4. Notice that to calculate FIB(n), we only need the results of FIB(n—1) and FIB(n—
2). Thus, it is inefficient to store an entire array of FIB(x) for all x when we only
need the last two entries. We can make do with just two variables that we
iteratively update.

5. No. As a lower bound, to even read the inputs or write the answer requires O(n)
time, where n is the number of bits in the larger input.

Feedback form: https://forms.gle/cM1io6eXyH65ytMP8

Contributors:
e Kevin Zhu
e Axel Li



	Motivation
	Algorithms
	Asymptotics
	Fibonacci
	Bit Complexity and Addition
	Subroutines
	Exercises
	Solutions

