CS 170, Spring 2022 Note 2: The Fast Fourier Transform

0 Introduction

So far in this class, we’ve discussed efficient divide and conquer algorithms for multi-
plying numbers and matrices. The last divide and conquer algorithm we will discuss
is the Fast Fourier Transform (FFT) algorithm, which we will use to help us multiply
polynomials. The FF'T has been described as “the most important numerical algorithm
of our lifetime” due to its important practical applications in signal processing. Due
to its importance (and complexity), we’ll dive much deeper into the details than usual.

In this note, we will derive the most common variant of the FFT, called the Cooley-
Tukey FFT! in the context of speeding up polynomial multiplication. We hope to make
its derivation intuitive, though feel free to skip straight to the algorithm. Finally, we
will introduce FFT in relation to the Discrete Fourier Transform (DFT), and discuss
some additional applications.

For this note, assume arithmetic operations take constant time.

1 Polynomial Multiplication

Forward: This section isn’t necessary for understanding the FFT algorithm, but it
will help build context on the derivation. Also, some of the homework/exam problems
in this class involve reductions to polynomial multiplications (i.e re-expressing the
problem input in terms of polynomials, then multiplying them efficiently using FFT as
a black-box algorithm).

First, we’ll discuss two naive ways of multiplying polynomials. Given two polynomials
Alr)=ap+ay+ -+ ap 12" ' +a,2" and B(x) = by + by + -+ + 12" ! + ba™,
we would like to calculate the product polynomial, C'(z) = A(z)B(x). What does
the product polynomial look like in general? The easiest way to see this is to try
multiplying two arbitrary low-degree polynomials by hand and rearranging the terms
in order of degree. You should see that for any k, cp2* in C(x) is the result of adding
all the pairs of monomials whose degree adds up to k. Explicitly:

co = apbo

c1 = aobl + a1b0

k

C — E ajbk_j

=0

!The algorithm is named after Tukey, who created the algorithm during a meeting discussing
detection of nuclear-weapon tests in the Soviet Union. It was later discovered that Gauss had already
invented this algorithm in 1805.
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1.1 Naive algorithm 1: Multiplying in coefficient form

When multiplying two polynomials, a common manual method is to use the distributive
property and write out all of the terms, then combine terms of the same degree. A
naive algorithm to multiply polynomials can be easily fashioned using this approach.

To calculate the runtime of this algorithm, we must first determine how many different
terms there are after distributing. Since each polynomial has n + 1 terms, the product
of the two polynomials will have (n + 1)? = O(n?) terms in it, each of which can be
calculated in constant time. Afterwards, combining terms takes O(n?) time as well.
Thus, this algorithm runs in O(n?).

1.2 Naive Algorithm 2: Multiplying in value form, but with
inefficient conversions

Recall that a polynomial of degree n is usually expressed in its coefficient representa-
tion: A(z) = ag+ay + -+ Ap_12" 1 + a,2". However, we can uniquely represent
A(x) with any n+ 1 points on the polynomial (e.g a line is uniquely determined by two
points). This is the value representation: (z1, A(z1)), (22, A(22)), ..., (Tni1, A(Tni1))-

Note this holds for any n + 1 points of our choosing. Intuitively, there are n + 1
coefficients in the coefficient form and n + 1 points in the value representation - we
have an equal number of degrees of freedom, and they should thus encode the same
amount of information, though we won’t provide a proof.

This is useful, since multiplying point-wise is much more efficient than multiplication
in coefficient form, which we’ll discuss more in detail below.

So, given two degree n polynomials in coefficient representation, our algorithm would
be:

1. Evaluate A(z) and B(z) each at the same set of 2n + 1 x-coordinates of your
choice (i.e converting them to value representation).

2. Multiply each of these points together.

3. Interpolate the 2n+ 1 points to retrieve C'(x) (i.e converting the points back into
coefficient representation).

Note that although each A(z) and B(z) can be uniquely represented by n + 1 points,
the product polynomial is of degree 2n, and therefore requires 2n+1 points to represent
it uniquely.

Runtime: To calculate the runtime, let’s first analyze how to evaluate a polynomial
at a given arbitrary x-coordinate, zg. Note that to calculate, say, j, we can reuse our
result of 2§ and multiply that by z, instead of recalculating it from scratch. Taking
advantage of this fact, we can rewrite the polynomial:
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A(x) = ag + zo(as + zo(az + - - - + xo(an—1 + x0ay,)))

and evaluate this expression starting from the innermost parentheses.? This involves
n additions and n multiplications, and is thus O(n) time. Since we do this for 2n + 1
points, evaluation takes O(n?) in total.

Next, multiplying two points at the same x-coordinate is simply multiplying their y
values together, which is O(1). Since we do this for 2n 4 1 points, this step takes O(n)
in total.

Finally, interpolation can be done in O(n?) as well using linear algebraic techniques,
though they aren’t the focus of this class.?

So, in total this algorithm is still O(n?). Our bottleneck is converting between coef-
ficient and value representation. This is where the FFT (and the inverse FFT, aka
IFFT) come into play.

2 FFT Derivation

How do we speed up evaluation? For simplicity of calculations, from here on, let’s say
we're given a single polynomial, A(x), as a degree n— 1 polynomial, so it needs n points
to uniquely define it. Remember we have the choice of whichever n points we like -
perhaps we can come up with a better set of points than just picking them arbitrarily.

2.1 Observation 1: Positive-Negative Pairs

Say you wanted to evaluate A(z) = 22, for example. A simple observation is that
A(z) = A(—=) for any z, since our polynomial is symmetric over the y axis. Gener-
alizing this, A(x) = A(—x) is true for any polynomial consisting of only even degree
terms (e.g A(x) = 2 + x?), as the —1s are taken to only even powers.

To utilize this observation, let’s choose our n points as n/2 positive-negative pairs:
{@1, =21, 22, =22, ..., Tpj2, —Tn) 2 }; then, we essentially only need to evaluate half of
our original points, since we can easily retrieve A(—z) from each A(z).

Right now, this only holds for even polynomials. But we can actually take advantage of
this observation for all polynomials: we can decompose a polynomial into its even and
odd terms, then factor an z out of the odd terms to create another even polynomial:

Example: A(r) = 2+3z+52°+ 723+ 112" +132° = (2+522 +112?) +2(3+T2% +132%).

2This is called Horner’s method.
30ne way is to create a system of equations produced by plugging in each point in the coefficient

form and solving for the coefficients. Another is Lagrange Interpolation, which is sometimes covered
in CS70 and EECS16B.
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Now with this decomposition, since the polynomials within the parentheses (which we’ll
call ’subpolynomials’ from now on) are even, A(z) = A(—x) for those subpolynomials.
For example, try evaluating A(x) at x = 1 and x = —1. The subpolynomials yield 18
and 23 respectively for both x = 1 and x = —1. This is great, as we can evaluate the
two subpolynomials at © = 1 once, and use the results for both A(1) and A(—1). Here,
A(l) =184+ 1-23 and A(—1) =18+ —1-23.

This isn’t actually much speed-up though, as cutting our number of evaluations in
half still yields 1/2 - O(n?) = O(n?). However, if we can do this recursively, the effect
compounds.

2.2 Observation 2: Subpolynomials in 2

Notice in the example above that all the monomial terms in the parentheses are poly-
nomial in 22 (simply because even numbers are divisible by two). So, we can formulate
these subpolynomials as functions of 22, which allows us to use recursion since the
degree (and thereby number of necessary points) are now halved in these two polyno-
mials! Combining our two observations, we can express our polynomial A(z) and also

A(—x) as:

IS
&
I

A (2?) + 1A (2?)

where

A (2?) = ag + agx + -+ - + ap_ox™?!

Ag(x?) =a; +asv + -+ a1

Example: Using the same example above, A.(2?) = 2 + 5z + 112? and zAg(2?) =
(3 + Tx + 1327).

So, instead of evaluating A(x) at n points: {z1, —x1, 22, =2, ... Tp/2, =Ty 2}, We can
instead evaluate A.(z?) and Ag(z?) at n/2 points: {x},23,...2] ,} and use the above
formulas to retrieve A(x) and A(—z) for each point.

This relation suggests a recursive algorithm, as we desire to recursively evaluate A, (z?)
and A,(7?) in the same way, i.e further breaking them into their respective even and
odd subpolynomials at n/4 points that are positive-negative paired, and so on.

However, there is a glaring issue. We chose our original input to consist of positive-
negative pairs to reduce our work by half, but after one step of recursion, our points
are no longer positive-negative paired - they are all positive, as 22 is always positive
for real numbers.
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2.3 Observation 3: Complex Numbers

So, we turn to the complex numbers. Reverse-engineering what the points must be, at
the bottom layer, let’s say we have x = 1. At the previous layer of recursion, we then
needed 22 = 1, so x = 1 and = —1. At the layer before that, we then needed 2% = 1
and 22 = —1, s0 v = 1, —1,4, —i. We can see in general, at the top layer we need the
set of x such that ¥ = 1. These are known as the roots of unity.

V V'V V
\VARRV
N4

+1

Figure 1: 4th roots of unity. Source: DPV, pg. 64

2.4 Roots of Unity

The nth roots of unity, denoted as w* for k € {0,1,...,n — 1}, are defined to be the
set of & such that z” = 1. Written using Euler’s formula, they are w, = e*™*/™ since
taken to the nth power yields e?™*, which will always evaluate to 1 for any value of k,
as they are multiples of 27 radians.

Notice that squaring a nth root of unity produces a n/2th root of unity. Algebraically,
you can imagine squaring as placing a /2 in the denominator of the exponent, creating
an n/2th root. Though it may be clearer to see geometrically:
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Divide-and-conquer step

Evaluate A(x) Evaluate

at nth roots Alx), Aulz)

of unity at (n/2)nd
roots

Divide and

congquer
S

(n is a power of 2)

Figure 2: Source: DPV, pg. 74

So, the nth roots of unity when squared creates n/2th roots of unity, which are still
positive-negative paired - this allows us to continue our recursion! Thus, we have our
algorithm.

3 FFT Algorithm

The FFT algorithm evaluates a polynomial at the nth roots of unity. Here is the
psuedocode:

Pseudocode:

Algorithm 1 FFT

1: procedure FFT((ag, a1, ...,0,_1),w)

2 if w =1 then

3 return ag

4: Eo,Ey,...,Eyn 1+ FFT((ag, as, . .., a,_2),w?)
o: 007 01, N 7On/2—1 — FFT((CLl, as, ... ,an_l), w2)
6 for j=0ton/2—1do

7 Aj — Ej + ijj

8 Aj+n/2 < Ej — ijj

9 return (Ag, A1, ..., A1)

(Note that n must be a power of 2, so we must round the number of coefficients up to
the next power of two, padding with zeros if necessary.)

In this pseudocode, the input is the coefficients of a polynomial A(x) = ag+ayz+-- -+
an—12" 1 in a list, and the A;’s that are returned represents the original polynomial

A(z) evaluated at w’ i.e. the nth roots of unity. E; and O; represent the even and odd
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polynomials evaluated at (w®)?, respectively. We put the positive pairs of the roots of
unity in the first half of the returned list, A, and the negative pairs in the second half.

Runtime: Let 7'(n) be the amount of time required to calculate the FFT with the nth
roots of unity. At each recursive step, we create two subproblems (i.e the subpolynomi-
als A.(z?) and A,(2?)) each half of the original size, as they’re polynomial in 22, which
means their degree (and thereby number of points) is halved. We evaluate n points
in total using the two formulas (notice the for-loop over n/2 doing two assignments
per loop) each in constant time since it’s just a few arithmetic operations, yielding
O(n). Thus, we have the recurrence relation 7'(n) = 27'(n/2) + O(n). By the Master
Theorem, this algorithm runs in O(nlogn) time, a significant improvement over the
naive O(n?) approach!

As a sanity check, what gave us our speedup? Suppose we didn’t use positive-negative
pairs and just used A(z) = A.(2?)+zA,(2?) recursively at n arbitrary points. In order
to evaluate our original n points, we’d need to solve A.(z?) and A,(z?) at the full n
points (in contrast with n/2 points) And so on - every layer requires the full n points.
The runtime of that would be back to O(n?) (Exercise 2.3). Thus, our speedup came
from reducing our points in half recursively.

3.1 Matrix Generalization: DFT, Inverse FFT

Why is this algorithm called the Fast Fourier Transform? Let’s generalize outside
the scope of polynomials. Evaluating a polynomial can be interpreted using linear
algebra as a ’transformation’ from the coefficient ’'basis’ to the value "basis’, so it can
represented as a matrix-vector multiplication:

A(zo) 1 a:§ ool ao
A(xy) 1 2 zf ... o} a
o : (1)
A(zp1) 1z, 22 ... 2" |an

Above, our choice of n points determines our transformation matrix, which we multiply
on our vector of coefficients to give us a resulting vector of values.

The FFT chooses our n points to be the roots of unity. This transformation matrix is
known as the Discrete Fourier Transform (DFT) matrix.

W00 WOl . WO (n—1)
010 Wil o wl(n=1)
D”(w) - : : .. : (2)
w00 =11 0 (n=1)(n—1)

27, .
where w = e® " is a nth root of unity.
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This visualization is helpful as we can think of polynomial interpolation as applying
the inverse DFT matrix. Using linear algebra, it turns out that the inverse of the DF'T
matrix is closely related the DFT matrix, namely D, (w)™ = 1D, (w™). Thus, the
FFT algorithm can be modified easily to compute the inverse as well. All you have to
do change the input of the psuedocode to take the inverse roots of unity, then divide

by n at the end!*

4 Application

4.1 Revisiting Polynomial Multiplication

We can now improve naive algorithm 2 using FFT and IFFT! Given two degree n
polynomials in coefficient representation, let N equal to 2n + 1 rounded up to the
nearest power of 2. Our improved algorithm is as follows:

1. Evaluate A(z) and B(x) at the Nth roots of unity (i.e converting them to value
representation).

2. Multiply each of these points together.

3. Interpolate these points using IFFT to retrieve C'(z) (i.e converting the points
back into coefficient representation).

Runtime: FFT in O(N log N) + multiplication in O(N) + IFFT in O(N log N) yields
O(N log N). Note that N = O(n), so the algorithm runs in O(nlogn).

4.2 Integer Multiplication [EXTRA]

Recall that when we write an integer in base b as (ay, . . . a1a9)p, what we really mean is
anb"—|—~~~—|—a1b—|—a0

This is precisely A(x) = a,a™ + - -+ + a1z + ag evaluated at bl Thus, if we wanted to
multiply two integers in base b, we could think of it as multiplying two polynomials,
then writing down the coefficients of the resulting polynomial as the digits of our
answer.

If it were this simple, why did it take researchers until 2020 to arrive at an O(nlogn)
algorithm for integer multiplication? Well, there’s no guarantee that the coefficients
are actually representable as digits. In other words, we need to carry, and that takes
time.

4Note that in other sources the normalization factor of % for the inverse DFT matrix only may be
split to be ﬁ in front of both the DFT matrix and its inverse.
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4.3 Convolution [EXTRA]

Suppose we had two discrete time signals z[n] and y[n], i.e. functions from integers to
real values. The convolution of x and y is also a signal (i.e. function) defined by the
following:

oo

(wxy)[n] = > xlklyln — k]

k=—o00

However, this almost the exact same formula as the product of two polynomials! In
particular, if we have C(z) = A(x)B(x), then the coefficients of C'(x) are

min(i,n—1)
G = agbi—

k=0

If x and y are only nonzero for t = 0,1,...,n — 1, then convolution and polynomial
multiplication are identical.

4.4 Cross Correlation [EXTRA]

Cross correlation can be thought of as a sliding dot product between two signals. In
particular, we write

o

(@xy)n] = D alklyln+ k|

k=—o00

where x and y are discrete time signals. The nth term computes the dot product of x
and y shifted to the left by n.

Notice how this equation is similar to the equation for convolution, just with a +k
instead of a —k. In fact, the cross correlation between two signals is exactly the same
as convolution between two signals, but with one of them reversed in time!

To see this, let wn] = x[—n|. Then

(wry)n] = > wlklyln+ k]
= > a[-ky[n + k]

= > alilyl i

1=—00

= (zxy)[n]
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5

Exercises

. Suppose you want to multiply a polynomial of degree 5 and a polynomial of

degree 9 with each other. What root of unity do you need to use in the FFT
algorithm?

. Use the DFT to compute the product of 1 + 2z and 3 + 422,

. Suppose we just used the A(z) = A.(z?) + A, (2?) trick recursively to evaluate

a degree n — 1 polynomial at n arbitrary points. What would the runtime of this
algorithm be?

. A homogeneous polynomial is defined to have terms all of the same degree, and

can consist of multiple variables (e.g z°+2z3y*+9zy*). Find an efficient algorithm
to multiply two homogeneous polynomials, each of two variables x and y.

10
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6

Solutions

. The end result of the product will be a degree 14 polynomial, which is determined

with 15 points. Recall that the number of points we evaluate our polynomials at
is always a power of two, so we round up and use the 16th roots of unity.

. Since the end polynomial is of degree 3 and is determined by 4 points, we use

the 4th roots of unity. We first evaluate the input polynomials at the 4th roots
of unity:

11 1 1 1 3

I ¢ =1 —of |2 |1+2
1 -1 1 -—=1f 0ol | -1
11— -1 4] |0] [1—2i
1 1 1 1] [3] [7

1 ¢« —1 —¢f (O] |[—-1

1 -1 1 =1 (4] |7

1 —i -1 7] |0] -1

We then compute the pointwise product:

3 7 21
142 o -1  |-1-2
-1 T -7
1—22 -1 -1+

Finally, we do polynomial interpolation with the inverse DFT:

1 1 1 1 21 3
1{1 —i -1 i |-1-2| |6
401 -1 1 -1 -7 | |4

1 i =1 —i| |—1+2 8

Our answer is 3 + 6x + 422 + 8z3.

. Note that we have to be careful when using Master Theorem here, as the number

of points where we are evaluating the polynomials stays static while the degree
of the polynomials themselves get halved at each step. Since we’re evaluating n
points at each recursive step anyway, let’s just compute the amount of time it
takes to evaluate a single point and multiply by n.

Let T'(n) be the amount of time taken to evaluate a degree n polynomial at
a single arbitrary point. By splitting our polynomial into odd and even terms
and evaluating those separately, we have T'(n) = 27(n/2) + O(1). By Master
Theorem, our runtime is O(n).

11
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Thus, the total amount of time taken to evaluate a degree n polynomial at n
arbitrary points is nT'(n) = O(n?), which is no better than the naive approach.
We also could have reached this conclusion by observing that evaluating a poly-
nomial at any point trivially takes {2(n) time, so evaluating at n arbitrary points
takes Q(n?) time.

Overall, this reaffirms what we know already: evaluating a polynomial at a single
point must take linear time; the only way to save time is if we are evaluating a
polynomial at many points with some sort of symmetry!

4. Let us first examine the properties of homogeneous polynomials of degree n with
two variables x and y. By definition, any term in the polynomial must be some
constant times z%y°, where a +b = n and a,b > 0. Since there is only one
degree of freedom, we can focus on the powers of  when multiplying two such
polynomials, then put the powers of y back at the end.

Thus, our algorithm consists of the following: given two polynomials of two
variables z,y and of degree m and n respectively, remove all instances of y.
Multiply the polynomials using FFT, then add back in powers of y to each term
to ensure the degree of all terms in the result is m + n.

Feedback form: https://forms.gle/cM1io6eXyH65ytMP8

Contributors:
e Kevin Zhu
e Axel Li
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